Merdeka 118 tower, in Kuala Lumpur, ranks as the second-tallest building in the world and the tallest in Southeast Asia, standing at 678.9 metres with a multi-faceted diamond-shaped façade and unique spire design.

Its form was inspired by the outstretched hand gesture made by Malaysia’s first Prime Minister in 1957, when he declared the nation's independence in Stadium Merdeka, which is part of the Merdeka 118 precinct. Arup has led the structural, civil and geotechnical engineering, working with the local firm, RSP Architects jointly with Fender Katsalidis

We brought a number of innovations to the design of this mixed-use tower, in collaboration with the contractor, SUJV. We co-developed a unique high-performance concrete (HPC) with record-breaking pumpability that enhanced the tower’s overall constructability. It also enabled more usable premium space for the client and saved hundreds of tonnes of structural steel, reducing both environmental impact and cost. 

Set in a prime location, Merdeka 118 is directly integrated with all the rail networks in the city with the ‘Merdeka’ MRT, two LRT stations and the monorail. We have taken great care to preserve the integrity of the neighbourhood with careful excavation and extensive geotechnical monitoring.

Its landmark address is culturally and historically significant. Overlooking Stadium Merdeka, where Malaysia’s independence was declared, the tower symbolises the union of the historic and contemporary. It is the new focal point on the striking skyline of Malaysia’s capital city.

Merdeka 118 video still
Merdeka 118 tower, in Kuala Lumpur, ranks as the second-tallest building in the world and the tallest in Southeast Asia.

Preserving the historical neighbourhood

Merdeka 118 sits adjacent to two of Malaysia’s historical national landmarks – Stadium Merdeka and Stadium Negara – and is directly connected to an MRT station. We have been exceptionally careful to minimise any settlement or lateral movement. We designed a circular-shaped cofferdam wall, as an embedded retaining system for excavation. The circular shape allows the cofferdam to be self-supporting through the hoop stress mobilisation, removing the need for any struts or ground anchors.

Innovation with high-performance concrete

We developed a unique HPC with the contractor, for the tower core and mega column elements. Its excellent pumpability qualities enabled us to meet a record-breaking height for direct high elevation concrete pumping. It also has a high modulus of elasticity to better resist lateral wind loads, high slump flow for excellent workability, high strength and minimal heat of hydration. 

Coupled with three sets of 3-storey deep outrigger structure, our engineering innovation achieves structural stiffness with high resistance to wind loads. The size reduction of the columns and core walls maximises usable premium space for the client.

Safety taken to new heights

Accounting for almost a quarter of the tower’s height is the intrinsically slender and flexible spire which is subjected to vibration due to wind load. To minimise the vibration, we adopted 3D space truss framing and its wind load distribution has been ascertained by state-of-the-art aeroelastic wind tunnel testing.

Our Advanced Technology and Research team also conducted in-depth fatigue assessment of the spire and related connections to ensure the spire structures can withstand accumulated damage from day-to-day wind events during its design lifetime.